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Abstract -
Modern retrofit construction practices use 3D point cloud

data of the building envelope to obtain the as-built dimen-
sions. However, manual segmentation by a trained profes-
sional is required to identify and measure window openings,
door openings, and other architectural features, making the
use of 3D point clouds labor-intensive. In this study, the Au-
tomatic point Cloud Building Envelope Segmentation (Auto-
CuBES) algorithm is described, which can significantly re-
duce the time spent during point cloud segmentation. The
Auto-CuBES algorithm inputs a 3D point cloud generated by
commonly available surveying equipment and outputs awire-
framemodel of the building envelope. Unsupervisedmachine
learningmethodswere used to identify facades, windows, and
doors while minimizing the number of calibration parame-
ters. Additionally, Auto-CuBES generates a heatmap of each
facade indicating non-planar characteristics that are crucial
for the optimization of connections used in overclad enve-
lope retrofits. With a scan resolution of 3 mm, the resulting
window dimensions showed a mean absolute error of 4.2 mm
compared to manual laser measurements.
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1 Introduction
Buildings are responsible for 30% of the total carbon

dioxide emissions in the US [1]. To mitigate the impact
of building operations on climate change, the application
of energy codes in construction practices has reduced the
energy use in buildings by more than 40% since their
insertion in the 1980s. However, about 52% of residential
and 46% of commercial buildings were built before energy
codes [2]. Hence, large energy savings can be achieved by
retrofitting older buildings and bringing them up to code.
Overclad envelope retrofits are an attractive solution

since they minimize occupant disruption and shorten con-
struction time at the job site. However, they require pre-
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cise measurements of the existing envelope to adequately
design and manufacture the retrofit panels. Current state-
of-the-art retrofit panel design and sizing consists of three
steps: 1) 3D point cloud data generation of the build-
ing envelope using commonly available surveying equip-
ment, 2) manual segmentation of 3D point cloud data
by a trained professional to identify and dimension win-
dow openings, door openings, wall protrusions, and other
non-planar architectural features, and 3) modular panel
layout optimization and sizing by an architect or engi-
neer [3, 4]. The process of manually segmenting the
point cloud data can be difficult and costly, often requiring
third-party software and a trained professional to spend
several man-hour-weeks depending on the size of the ex-
isting building. Additionally, after segmentation of the
point cloud into different components of the envelope, the
position and size of each component (window, door, etc.)
must be extracted from the point cloud which often in-
cludes human-introduced errors due to the difficulty and
tediousness of the process. Although commercially avail-
able software has been optimized to handle point clouds
for manual segmentation, automated feature identification
and measurement extraction are still challenging. Thus,
the automation of these processes could save a significant
amount of time and money while also minimizing errors.

Recent advances in machine learning have enabled the
development of automatic segmentation algorithms for ex-
tracting building envelope features. Common practices in-
clude the use of photogrammetry (RGB cameras) data [5]
or a combination of photogrammetry and light detection
and ranging (LiDAR) data [6]. Although such algorithms
can identify the locations and dimensions of windows
and doors, they are limited to the resolution of the cam-
era (∼10s of mm) and might not achieve the millimetric
accuracy needed for retrofit panel design. Deep learn-
ing techniques that analyze LiDAR data for point cloud
segmentation are capable of automatically identifying the
constituent components of common objects [7]. However,
this requires a large amount of correctly labeled points for
training neural networks. For the segmentation of large
structures, the scarcity of training samples and inaccurate
boundary segmentation have limited the scope of their
usage [8]. For building envelope segmentation specifi-
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Figure 1. Flowchart of Auto-CuBES algorithm.

cally, such a training set could require additional labor
time and cost. Moreover, the variety and uniqueness of fa-
cade topologies exacerbate the real-world training sample
scarcity problem. Unsupervised machine learning meth-
ods that do not need training data present a solution for
the building envelope segmentation task. Even though
unsupervised methods require the explicit definition of se-
quential tasks and task-dependent calibration parameters,
they have been successful at generating architectural floor
plans from point clouds of building interiors [9].
In this study, we introduce the Automatic point Cloud

Building Envelope Segmentation (Auto-CuBES) algo-
rithm based on unsupervised machine learning that can
automatically label 3D point cloud data and reduce the
time spent in manual segmentation. The algorithm can
process high-resolution point clouds and generate a wire-
frame building envelope model with a small set of calibra-
tion parameters. The remaining sections are as follows.
Section 2 describes in detail each component of the Auto-
CuBES algorithm. Section 3 shows the algorithm results.
Finally, Section 4 presents conclusions and future research.

2 Auto-CuBES algorithm
Figure 1 shows the flowchart of the Auto-CuBES algo-

rithm starting from the input point cloud file to the output
wire-frame model. In contrast to deep learning methods
where layers of neurons are placed between inputs and
outputs, unsupervised methods are typically divided into
sequential tasks. Each task of the Auto-CuBES algorithm
plays an important role in segmentation and outlier re-
moval. Although each task has its own set of calibration
parameters, empirical observations suggest that most of
them do not need to be recalibrated for different input files.
However, the decision step in Fig. 1 might require some
recalibration based on the level of accuracy defined by
the user. The following subsections describe the unsuper-
vised machine learning methods, calibration parameters,
and preliminary results of each task.

Figure 2. Point cloud P of a residential building.

2.1 Input point cloud file structure

The Leica Nova MS60 MultiStation was used to collect
point cloud data with 7-dimensional elements of the form:

P =
[
% ! �

]
=

[
G H I ! A 6 1

]
(1)

where % =
[
G H I

]
are the rectangular coordinates, !

is the LiDAR intensity recorded as the return strength of
a laser beam, and � =

[
A 6 1

]
are the corresponding

pixel colors obtained from the camera. A duplex residen-
tial house was scanned by placing the LiDAR scanner in
front of each facade and stitching the scans together using
four control points located near the corners of the building.
Figure 2 shows the resulting point cloud used in this study.
The point cloud encompasses a total of 32.2 million points
with an average distance of 3 mm between points.

2.2 Identify and extract individual facades

The algorithm starts by identifying the four facades of
the building and removing the roof points. To achieve
this, and assuming that the LiDAR scanner was leveled,
the point cloud was rotated about the I-axis to align the
walls with the G, H canonical basis. To determine the angle
of rotation, a plan view of the envelope was generated by
selecting a subset of points corresponding to a section
passing through the center of the building’s height. In
other words, the plan view of the envelope is the set:

� =
{[
G H I

]
∈ P

�� |I − E[I] | < X} . (2)

Here, E[·] is the expected value function and X = 0.4 m is
a calibration parameter. The rotation angle was calculated
by solving the minimum-volume oriented bounding box
problem using the method described in Chang et al. [10].

The top-left plot of Fig. 3 shows the resulting plan view
of the building envelope. By aligning the envelope � with



Figure 3. Plan view of building envelope � with
joint and marginal PDFs of the � and � components.

the �- and �-axis, the individual facades can be identified
by looking at the distribution of points over each axis. The
histograms in Fig. 3 correspond to the joint and marginal
distributions of

[
� �

]
⊂ � . The marginal probability

density functions (PDFs) pdf(�), and pdf(�) where ap-
proximated using kernel density estimators (KDEs). The
Gaussian kernel was used in the KDE and the bandwidth
was selected following Silverman’s rule of thumb [11].
Note that the marginal PDFs have two main modes,

each of which corresponds to one of the four facades of
the building envelope. Let �̄>0 = arg max�>0 pdf(�) be
the largest mode for the positive values in the �-axis. Sim-
ilarly, define �̄<0 for the negative �-axis, and �̄>0, �̄<0
for the �-axis. Although each mode defines the average
location of a facade, the facade thickness was obtained
by selecting the interval between the inflection points
around each mode. Let �̄L

>0 = arg max�>0
�
��

pdf(�) and
�̄R
>0 = arg min�>0

�
��

pdf(�) be the inflection points around
�̄>0. Note that the inflections points bound the correspond-
ingmode on the left and right as follows: �̄L

>0 < �̄>0 < �̄R
>0.

Using similar definitions for the remainingmodes, the four
facades of the building envelope can be extracted as:

�
�<0
� = {� ∈ P | �̄R<0 ≤ � ≤ �̄L>0, �̄

L
<0 ≤ � ≤ �̄R<0} (3a)

�
�>0
� = {� ∈ P | �̄R<0 ≤ � ≤ �̄L>0, �̄

L
>0 ≤ � ≤ �̄R>0} (3b)

��<0
� = {� ∈ P | �̄L<0 ≤ � ≤ �̄R<0, �̄

R
<0 ≤ � ≤ �̄L>0} (3c)

��>0
� = {� ∈ P | �̄L>0 ≤ � ≤ �̄R>0, �̄

R
<0 ≤ � ≤ �̄L>0} (3d)

Figure 4 shows the automatically identified facades. Note
that the procedure described here is intended for a tradi-
tional envelope with four perpendicular facades. A more
complex geometry will require a modified approach.

2.3 Identify and extract facade features

Each facade was individually analyzed to extract its
main features (doors and windows). Based on traditional

Figure 4. Four perpendicular facades from building
envelope sectioned according to identified features.

residential construction practices, it was assumed that the
window and door frames are recessed with respect to the
exterior wall surface. Therefore, and thanks to the high
resolution of the point cloud data, the facade thickness
can be sliced into three main subsets: 1) interior points
corresponding to windows and doors, 2) wall points, and
3) exterior points corresponding to features such as roof
overhangs and window sills. In order to slice the facade,
the point cloud distribution with respect to the thickness
axis was considered. However, this method assumes that
the facade is flat, which is not always the case. To remove
flatness assumptions, the facade was decomposed into dif-
ferent sections depending on the number of features in the
facade. The unsupervised k-means clustering algorithm
was used to segment each facade into � sections [12].
Here, � is a parameter given by the user. Figure 4 shows
how each facade can be automatically divided into sections
corresponding to the number of features.
The algorithm assumes that each section is locally flat,

even though the combined facade is not. Therefore, for
each section within a facade, interior, wall, and exterior
features were identified using the point cloud distribution
of the thickness axis. As an example, consider dividing
the first facade in Fig. 4 into the sections {��<0

�,�
}�∈{1,2,3}.

Under the locally-flatness assumption, the facade section
will be align with a plane of the form � = ��� + �� � + �� .
Moreover, consider the following coordinate transforma-
tion to align each section with the ��-plane:

��<0 = � − (��� + �� � + �� ) + E[�] . (4)

The parameters of the linear function were found using



Figure 5. Segmentation of the facade ��<0
� into exterior, wall, and interior points by analysing individual sections.

robust least squares with bisquare weights due to the ex-
istence of outliers [11]. The top row of Fig. 5 shows the
pdf(��

<0) for each section. Although the resulting PDF is
not unimodal, there is a clear dominant mode where the
wall points are located. Let �̂�

<0 = arg max pdf(��
<0) be the

dominant mode, then the thickness interval corresponding
to wall points was defined as �̂�,L

<0 ≤ ��
<0 ≤ �̂

�,R
<0 , where:

�̂
�,L
<0 = max

{
��<0 < �̂�<0

����
�

��
pdf(��<0) = 0

}
(5a)

�̂
�,R
<0 = min

{
��<0 > �̂�<0

����
�

��
pdf(��<0) = 0

}
. (5b)

Note that the bounds in Eqn. (5) correspond to the first
critical points of the PDF to the left and to the right of
the dominant mode, respectively. This interval for each
section is pictured in Fig. 5 by the red dashed lines. Con-
sequently, the exterior points satisfy ��

<0 < �̂
�,L
<0 while the

interior points correspond to ��
<0 > �̂

�,R
<0 . This is also

true for facade ��<0
� , with the appropriate reformulation

of the PDFs over the �-axis. However, keep in mind that
the reverse is true for facades ��>0

� and ��>0
� because of

the positive sign of the thickness component. Finally, let
�

�<0
�,�

, � �<0
�,�

, and �
�<0
�,�

be the point clouds correspond-
ing to wall points, interior points, and exterior points,
respectively. The second row of Fig. 5 shows the result-
ing point clouds. Note that the original assumption of
recessed window/door placement holds and the interior
points correspond mostly to the windows and door points.
However, one can observe that roof and ground features
are also present in the set of interior points. This high-
lights the need for outlier removal, where the roof, ground,
and other facade characteristics are purposely removed in
order to extract the dimensions of windows and doors.

2.4 Outlier removal

A distanced-based outlier removal was used to clean
up the individual point cloud sections in order to extract
accurate dimensions and locations of building features. A
previous study by the authors used the Mahalanobis dis-
tance to determine outliers [13]. Although the properties
of the Mahalanobis distance allowed for statistical hypoth-
esis testing to determine outliers, the underlying Euclidean
metric is not well suited for handling rectangular features
such as windows and doors. Therefore, we present a new
custom metric developed for rectangular point clouds.
Let � ∈ Π, where Π is a point cloud corresponding to

wall or interior points. Consider the normalization:

�̃ =
� − E[�]

M
[��� −M[�]

��] ∈ Π̃. (6)

Here, M[·] is the median function. The zero-mean and
unit median absolute deviation transformation is a robust
normalization approach to deal with outliers in each point
cloud. Note that Eqn. (6) transforms the Cartesian co-
ordinates of rectangular prisms, such as windows, doors,
and rectangular walls, into cubes centered at the origin.
In order to draw a boundary around the cube and remove
outliers, consider using the Chebyshev metric applied to
the rectangular coordinates of the normalized point cloud:

� ( �̃) = max
{
|�̃ |, | �̃ |, | �̃ |

�� [�̃ �̃ �̃
]
⊂ �̃

}
. (7)

Moreover, outliers are generally miss-classified points that
are not only physically distant from the cluster centroid but
also correspond to a different material. For example, note
that point clouds of interior points �

�<0
�,�

in Fig. 5 have
outliers corresponding to brick cladding and roof tiles.
Such outliers are made of materials different from those of
window frames. Therefore, the normalized light intensity



Figure 6. Plan, side, and elevation views of � �<0
�,D

with heat map describing flatness of outside surface.

�̃ can also be used to identify outliers since it correlates
well with the reflectivity of the material. Finally, consider
the following metric for identifying outlier points:

D : R7 ↦→ R+, D( �̃) = � ( �̃) + � | �̃ |. (8)

Here, � > 0 is a calibration parameter that captures the rel-
ative importance of the light intensity component with re-
spect to the rectangular coordinates within the point cloud.
The outlier removal task consists on discarding the ele-

ments of a point cloud with a distance D(·) larger than a
preset threshold thres. In other words, the reduced point
cloud after the outlier removal task was defined as:

ΠD = {� ∈ Π | D( �̃) < thres, �̃ ∈ Π̃}. (9)

2.4.1 Outlier removal for wall points

For this study, the calibration parameter � = 1 worked
well for all facades. On the other hand, the threshold  thres
was not uniform along all sections. As described by the
flowchart in Fig. 1, the outlier removal task of the Auto-
CuBES may require some iteration by the user. In this
case, after a visual inspection of the resulting point cloud,
the user can decide to pick a larger or smaller threshold
�+1

thres at iteration 
. It was empirically found that a value of
0

thres = 4 provides a good starting point for the iteration.
Following the same example as before, consider the

wall points� �<0
�,�

. After outliers were removed from each
section, the wall points of the entire facade correspond to
the union of all different sections, i.e.,� �<0

�,D =
⋃

� �
�<0
�,�,D

.
Figure 6 shows the plan, side, and elevation views of the
remaining elements after outlier removal. From the plan
view, note that the cladding is not flat, but it rather bows
in. The side view indicates that the wall is slightly leaning

Figure 7. Outlier removal for � �<0
�,�

using DBSCAN.

forward and is not perfectly plumb. The bowing, leaning,
or bulging of external walls can be summarized in the
elevation view by coloring the points according to the out-
of-plane value, define as the position of each point with
respect to the facade’s average plane. The average plane
was calculated with respect to the axis at the thickness of
the wall, similar to Eqn. (4) but keeping a zero mean. The
coloring not only helps to determine sections where wall
stability could be a problem, but it also assists in the design
of optimized connections for overclad panel retrofits.

2.4.2 Outlier removal for interior points

The top row of Fig. 7 shows the interior points � �<0
�,�

for
all three sections of the facade. Note that, in contrast to the
wall points � �<0

�,�
, distinct clusters can be identified cor-

responding to window/door points, roof points, and other
clusters such as vents. Hence, unsupervised clusteringwas
performed. The algorithm chosen for this task was DB-
SCAN [14], which is a density-based clustering algorithm
well suited to identify the cluster of each section corre-
sponding to windows and doors. The DBSCAN algorithm
determines if a point � belongs or not to a dense cluster by
considering a neighborhood of radius 	 = 12 cm around
�, if there are less than � = 100 points in the neighbor-
hood, then the point is an outlier. Finally, the dense cluster
corresponding to a window/door was decided based on
its proximity to the centroid of �

�<0
�,�

. The bottom row
of Fig. 7 shows the resulting clusters after the DBSCAN
algorithm was performed. Although the algorithm can
correctly identify the dense clusters corresponding to the
facade features, it cannot distinguish outliers within points
at the edge of the clusters. It was observed that, in most
cases, the subsequent use of the outlier removal method in
Eqn. (9) was needed to obtain accurate dimensions.



Figure 8. Clusters � �<0
�,�,D

corresponding to windows.

Figure 8 shows the resulting windows extracted from
facade ��<0

� after the sequential application of DBSCAN
and the outlier removal metric D(·). The top row of Fig. 8
shows the histograms of the distance D(� �<0

�,�
) calculated

for each window after running the DBSCAN algorithm.
For all the interior points, a value of � = 0.1 was used to
remove outliers mainly based on the cuboid shape of win-
dows and doors. Even though the windows are physically
similar, the histograms show some variability. This is due
to the sensitivity of the point cloud scan with respect to
scanner position, laser’s angle of incidence, and window
recessed distance from thewall. Nonetheless, we observed
a general triangular distribution with a sharp drop after the
main mode. Similar to the wall points, the distance thresh-
old for removing outliers was not uniform for all windows
and doors, and some iteration was needed. However, it
was empirically found that a value of 0

thres = 2.5 pro-
vided a good starting point. The individual values thres,�
for each window are pictured by the red dashed lines over
the histograms. Finally, the bottom row of Fig. 8 shows
the resulting point clouds to be used for extracting the
dimensions and relative positions of each window.

2.5 Wire-frame model generation

Once the original point cloud P has been segmented
into wall points (� �<0

�,D , �
�>0
�,D , �

�<0
�,D , �

�>0
�,D ) and inte-

rior window/door points (� �<0
�,�,D

, � �>0
�,�,D

, � �<0
�,�,D

, � �>0
�,�,D

), the
position and dimensions of the building envelope and its
features can be extracted to create a simple wire-frame
model. First, the exact dimension of each feature can be
obtained by solving the minimum-volume oriented bound-
ing box problem. This approach considers the possibility
that windows and doors might not be aligned with the
building facade. Moreover, as seen in Fig. 6, the facades
are not perfectly flat, hence it should not be assumed that
the windows are aligned. Thus, the bounding box not only
provides the dimensions of each feature but also generates

Figure 9. Wire-frame model of building envelope.

the rectangular prism needed for the wire-frame model.
Given that the wall points do not have a rectangular shape,
the facade dimensions and wire-frame model were ob-
tained using the convex hull. Note that, in either case, the
wire-frame generated is limited to convex point clouds.
Non-convex facades, such as those with towers, will need
a different approach to generate a wire-frame model.
Figure 9 shows the resulting wire-frame model when

combining the convex hulls of wall points and the bound-
ing boxes of windows and doors. Ultimately, the Auto-
CuBES algorithm was able to reduce the highly detailed
point cloud of the building envelope from 32.2 million
points to a simplified wire-frame model with 309 points
that summarized the essential information needed for
retrofit panel design. Moreover, the wire-frame model
combined with the out-of-plane coefficient in Fig. 6 can
be a powerful tool to obtain necessary as-built dimensions
for accurate overclad panel retrofits and for optimizing
the position and dimensions of connections on existing
facades previous to the retrofit process.

3 Results
Even though the Auto-CuBES algorithm has few cali-

bration parameters for a single point cloud, the total num-
ber of parameters scales linearly with the number of fa-
cades and the number of features per facade in the building
envelope. Ignoring the time needed to iterate over �

thres
for windows and doors in each facade, the Auto-CuBES al-
gorithm took a total of 12 m 22 s to run when implemented
in MATLAB on a computer running on a quad-core Intel
Core i7. Table 1 shows the breakdown of the time taken
to run each task in the Auto-CuBES algorithm. Note that
the DBSCAN algorithm takes the longest to run, taking
71% of the total running time. Although all other tasks in
the Auto-CuBES algorithm have been optimized to some
level using in-house developed code, the density-based



Table 1. Time taken to run Auto-CuBES algorithm
Identify and extract individual facades: 0 m 14 s
Identify wall and interior points: 2 m 03 s
DBSCAN only: 8 m 47 s
Outlier removal using metric D(·): 1 m 05 s
Wire-frame model generation: 0 m 13 s
TOTAL TIME: 12 m 22 s

clustering for interior points was done using the single
MATLAB command dbscan. Future work will explore
alternatives to accelerate DBSCAN in order to reduce the
overall Auto-CuBES execution time.
The accuracy of the Auto-CuBES was quantified by

comparing the resulting dimensions forwindows and doors
versus manual laser measurements. Before discussing the
results, it is important to mention two main caveats:

1. Manual measurements contain human errors: The
person measuring needs to aim the laser at the exact
interface between the window frame and the brick.

2. Only corner points were used to generate manual
measurements: This assumes that the rough openings
of windows and doors are square and straight.

Figure 10 shows the difference between the window
dimensions obtained using the Auto-CuBES and the man-
ual measurements for all facades. The calculated error is
shown as a bar plot for each window’s width (top row) and
height (bottom row), and the scanner resolution (3 mm) is
depicted with the dashed line. Facades �

�<0
� and �

�>0
�

show errors comparable to the scanner resolution. They
also correspond to the narrow section of the envelope,
in which the scanner could maintain a high resolution
throughout. Although not shown in the plot, the door di-
mensions for the facades showed comparable levels of ac-
curacy. Facade ��<0

� shows a low error on window height,
but some larger errors on window width. This is probably
due to variable resolution across the facade. Although, on
average, the scan has a 3 mm resolution, the actual con-
trollable variable in the scanner is the angle increments for
the robotic laser head. This means that surfaces that are
scanned at an angle (e.g., edge of a wide facade) can have
lower resolution than points directly in front of the scanner
head. Finally, facade ��>0

� shows the largest errors among
all. This was probably due to the scanner location with
respect to the facade. In contrast to the other scans, the
scanner position was not perpendicular to the facade due
to the topographical constraints of the terrain around the
building. Thus, the scan was taken at an angle and at a
different altitude compared with the rest of the scans. This
caused resolution and line-of-sight issues for the scanner.
To summarize the results, the mean absolute error

(MAE) was calculated for all features in the building en-

Figure 10. Error between bounding box dimensions
and manual laser measurements for windows.

velope. The width MAE was 4 mm while the height MAE
was 4.4 mm when the four facades were included. This
resulted in an overallMAE of 4.2 mmwith an average scan
resolution of 3 mm. If, however, facade ��>0

� is excluded
due to the non-ideal scanning conditions, the overall MAE
is closer to 3.2 mm. This indicates that, during ideal scan-
ning conditions, the point cloud resolution is maintained
and the error is minimized when the dimensions were au-
tomatically extracted from the point cloud. To cope with
resolution and line-of-sight issues, future studies will look
at a larger number of scans with overlapping areas.

4 Conclusions
This study introduces the Auto-CuBES algorithm for

extracting as-built dimensions of facades, windows, and
doors from a 3D point could of a building envelope. In
its current version, the algorithm is intended for simple
one-floor structures comprising four main perpendicular
convex facades, and rectangular windows and doors. The
Auto-CuBES can process 32.2 million elements of a 3D
point cloud and extract the minimum required points (309
in this study) to generate a wire-frame model of the build-
ing envelope. Additionally, the flatness of the external
cladding is evaluated to optimize the design of connec-
tions for overclad panel retrofits. The individual tasks of
the Auto-CuBES algorithm were based on unsupervised
machine learning methods which do not require a train-
ing set with labeled data. This methodology was chosen
due to the scarcity of labeled training samples for build-
ing envelopes and the inaccurate boundary segmentation
of current supervised machine learning algorithms. The
performance of the Auto-CuBES algorithm was evaluated
in terms of computation time and accuracy compared to
manual measurements. Without including the calibration
time taken to find the optimal thresholds for distance-based



outlier removal, the Auto-CuBES processed 32.2 million
points in 12 m 22 s. However, 71% of the computation
time was taken by the DBSCAN task, which will be opti-
mized in future versions. Manual lasermeasurementswere
compared against the automatically generated dimensions,
resulting in an overall MAE of 4.2 mm for the point cloud
in this study with 3 mm resolution. However, if only the
facades that were scanned under ideal conditions are con-
sidered, then the MAE is comparable to the point cloud
resolution. Therefore, the Auto-CuBES present a solu-
tion to expedite and reduce the cost of accurate overclad
retrofits to bring old buildings up to energy codes.
Future research will focus on expanding the capabil-

ities of the algorithm to include protruding and/or non-
rectangular architectural features, as well as dealing with
non-convex facades and non-rectangular envelopes. Cur-
rent efforts on non-convex hull optimization and on ran-
dom sample consensus (RANSAC) for arbitrary shape de-
tection are being considered to expand the applicability
of the Auto-CuBES. Additional development will include
the integration with advanced construction methods such
as the real-time evaluator (RTE) that is currently being
developed by the authors.
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